
SciDAC PDSI Update (part 2) 
CS/VIS PI Meeting, October 23, Germantown, MD 

Garth Gibson 
Carnegie Mellon University and Panasas Inc. 

SciDAC Petascale Data Storage Institute (PDSI) 

www.pdsi-scidac.org 

w/ LANL (G. Grider), LBNL (W. Kramer), SNL (L. Ward),  
ORNL (P. Roth), PNNL (E. Felix),  

UCSC (D. Long), U.Mich (P. Honeyman)  
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Everything Must Scale with Compute 
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•  Scaling 100%/yr given disk realities is hard 
•  Disk BW @ 20%/yr, IO/s @ 5%/yr 
•  Storage problem renews itself each year 
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•  PETASCALE DATA STORAGE INSTITUTE 06-11 
•  3 universities, 5 labs, G. Gibson, CMU, PI 
•  Enabling HEC storage to meet SciDAC needs 

•  SciDAC @ Petascale storage issues 
•  Community building: ie. PDSW @ SCxy 
•  APIs & standards: ie., Parallel NFS, POSIX 
•  Failure data collection, analysis: ie., cfdr.usenix.org 
•  Performance trace collection & benchmark publication 
•  IT automation applied to HEC systems & problems 
•  Novel mechanisms for core (esp. metadata, wide area) 
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Annual PDSI Sponsored Workshops 
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PDSW07 papers published & online 



Petascale Data Storage Workshop 08 
•  Monday Nov 17, 8:30-5, room 14, SC08 
•  www.pdsi-scidac.org/events/PDSW08 
•  IEEE Digital Library publication 
•  Tentative program 

•  Input/Output APIs and Data Organization for High Performance Scientific Computing 
•  Fast log-based concurrent writing of checkpoints 
•  Scalable Full-Text Search for Petascale File Systems 
•  Zest: Reliable Terabytes Per Second Storage for  Petascale Systems 
•  Performance of RDMA-capable Storage Protocols on Wide-Area Network 
•  Comparing performance of solid state devices and mechanical disks 
•  Arbitrary Dimension Reed-Solomon Coding & Decoding for Extended RAID on GPUs 
•  Pianola: A script-based I/O benchmark 
•  Introducing Map-Reduce to High End Computing 
•  Logan: Automatic Management for Evolvable, Large-Scale, Archival Storage 
•  Just-in-time Staging of Large Input Data for Supercomputing Jobs 
•  Revisiting the Metadata Architecture of Parallel File Systems 
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pNFS: Scalable NFS Standard & Code Soon 

•  Open source & competitive offerings! 
•  NetApp, Sun, IBM, EMC, Panasas …. 

Local 
Filesystem

pNFS server

pNFS IFS

Client Apps

Layout 
driver

1. SBC (blocks) 
2. OSD (objects) 
3. NFS (files)

NFSv4 extended 
w/ orthogonal 
layout metadata 
attributes

Layout metadata 
grant & revoke

•  SC-08 BOF Wed Nov 19 5:30pm 
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Tools for Understanding IO in Apps 

sourceforge.net/projects/libsysio 
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PDSI distributes parallel workloads 

sourceforge.net/projects/libsysio 
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PDSI distributes parallel workloads 
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PDSI distributes parallel workloads 
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PDSI distributes convenient packages 



Garth Gibson, 10/23/2008 www.pdsi-scidac.org 13 

Newest: File Statistics 
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www.pdsi-scidac.org/fsstats 



PDSI Targeted Apps 
•  P. Roth (ORNL) led 

•  Parallel Ocean Program (POP) with PERI 
•  Turbulent Combustion (S3D) with PERI 
•  IO characterization and modeling 

•  L. Ward (SNL) led 
•  Climate Change (CCSM) with M. Taylor 
•  Trace-based performance debugging 

•  G. Gibson (CMU) starting 
•  Astrophysics (Flash), reaching out to P. Hovland 
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Failure Data Collection 
•  Los Alamos root cause logs 

•  22 clusters & 5,000 nodes 
•  covers 9 years & continues 
•  cfdr.usenix.org publishes this 

and many other failure datasets 
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Revisiting checkpoint: Log representation 
•  Fastest checkpoint just a series of “variable=value” (ie. PSC Zest) 

•  Instead of seeking to serialized location, just append operation to log 

•  Each thread writes strictly sequential log of operations 

•  “Meaning” of set of logs is applying log to (possibly null) initial database 

•  Prior: Gatech/ORNL ADIOS, ANL summer project 
•  Discussing with SciDAC SDM on application to pHDF5/netCDF  

•  Embed in storage software as general, transparent service 
•  Optimize writing and reading representations separately 

•  Defer serializing by just storing changelogs for later application 

•  Some checkpoints never read, so never serialized 

•  If read before serialized, trigger serialization (or something smarter) 

•  Opens up embedded indices (FastBit, B-trees, database) 
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CMU class project: log-structured PVFS files 
•  HPC checkpoints 

•  AMR apps are 
non-sequential 
concurrent 
writers 

–  Lousy BW 
•  Store file as log  

of writes 
– Good BW 

•  Group 8 mpi-io write test (from LANL) 

  S. Dayal, M. Chainani, D.K. Uppugandi, 
W. Tantosiriroj 
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Storage suffers failures too 

Internet services Y 
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Storage failure especially painful 

•  Scalable performance = more disks 
•  But disks are getting bigger 
•   Recovery per failure increasing 
•   Hours to days on disk arrays 
•  Consider # concurrent disk recoveries 

e.g. 10,000 disks 
3%/year replacement rate 
1+ day recovery each 
Constant state of recovery? 

•  Maybe soon 100s of  
concurrent recoveries (at all times?) 

•  Design normal case  
for many failures (huge change!)  
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Object storage & scalable repair 
•  Defer the problem with parallel scalable repair 
•  File replication and, more recently, object RAID can scale repair 

- “decluster” redundancy groups over all disks (mirror or RAID) 
- use all disks for every repair, faster is less vulnerable 

•  Object (chunk of a file) storage architecture dominating at scale 
GFS, HDFS, …. PanFS, Lustre, PVFS, … Centera, … 
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Tome 

Developing reliable, evolvable Archives 
  Evolvable, distributed network of 

intelligent, disk-based tomes 
  Smart enough to function independently 
  Provide inter-disk redundancy 
  Building blocks for more complex 

systems 
  Evolve over time: integrate new 

technologies 
  Handle errors at multiple levels 

  Scale response to size of problem 
  Very high reliability! 

  Control costs 
  Commodity low-power hardware 

  Keep disks spun down 
  Standardized interfaces 

Garth Gibson, 10/23/200822 www.pdsi-scidac.org 



Metadata: Subindexing by Name 
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Use cases for huge directories 
•  Apps use FS as fast, lightweight database 

•  Use case: All clients inserting millions of small files 
in a single directory as fast as possible 

•  Retain VFS API: create(), lookup(), readdir(), etc. 
•  Creating many small files in a “burst” 

•  E.g., per-process checkpoint on large clusters 
•  E.g., science experimental capture 

•  Creating many small files “steadily” 
•  E.g., “log” files from long-running apps for later 

post-processing (history, bio device runs,…) 
•  Most interested in pushing the boundaries 
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Extendible Hashing [Fagin79] 
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•  Header-table doubles, if necessary 
•  On splitting, the new partitions distribute their keys 

•  Mechanism designed for single server impln. 

Hash keys for load-balancing 



GIGA+ Directories (PVFS, FUSE) 
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•  No synchronization & 
consistency bottlenecks 
•  Servers only keep local “view”, 

no shared state 

•  Eliminate serialization 
•  All servers grow  

directory independently,   
in parallel, without any  
co-ordinator 
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Whither shared storage clusters ? 
•  Contrasted to per-application/per-machine 

•  sharing allows common namespace 
•  sharing allows common provision+use of spare 

– including bursty usage 

•  But, interference can kill storage performance 
•  Disk: “context switch” = mechanical seek (slow!) 
•  Cache:  what does time-sharing mean? 
•  Cluster: coordinating timing across nodes 
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R-value quantizing of disk arm (2 apps) 
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But, data will be striped over servers 
•  Data striped for performance (esp. bandwidth) 

•  each client req. translates to multiple server accesses 
•  client req. is “done” when all accesses are done 

– so, overall req. waits for the slowest one 
•  unsynchronized quanta can lead to significant delays 

– so, need to coordinate quanta (a la synch spindles) 
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Promising initial results (seek intensive) 
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Cosmology Simulations (A. Szalay, JHU) 

Cosmological simulations have 109 particles and  
produce over 30TB of data (Millennium, Aquarius, …) 

•  Build up dark matter halos 
•  Track merging history of halos 
•  Use it to assign star formation history 
•  Combination with spectral synthesis 
•  Realistic distribution of galaxy types 

•  Too few realizations (IO and storage limited) 
•  Hard to analyze the data afterwards ->need DB (Lemson) 
•  What is the best way to compare to real data? 
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Looking to another form of object storage 
•  HPC & Web search operate at similar scale 

•  10s of thousands of nodes & growing 
•  Want to co-opt web effort/excitement for HPC 
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Recall pNFS: scalable NFS very soon 
•  Teach NFS to delegate file maps 

•  Client directs parallel transfer 
•  Scales bandwidth up 
•  Scales metadata load down 

•  IETF standard near complete 
•  Sun, NetApp, EMC,  

IBM, Panasas, BlueArc, etc 
•  Open source Linux essential 

–  Linux core team active 

•  Data servers can be clients too 
•  Maps expose placement 
•  Full, friendly, familiar, file systems  
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What if PVFS Shim’d into Hadoop? 
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Modified PVFS 
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N clients writes to n distinct files 

•  Multiple copies requires HDFS and PVFS to perform 
more write operation 
•  HPC file systems need to go this route for scalable rebuild 

•  HDFS writes the first copy locally (bad distribution) 
•  A good trick only if real work is already subdivided 
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Concurrent writes to a single file 

•  PVFS enables concurrent writes to non-overlapping 
regions, so N clients, each can copy 1/N each.  

•  Without multiple writers to a file, HDFS can only go 
as fast as a single client can 

•  Real issue is Internet service users have to play with 
data to store in lots of right-sized sub-files (ugh) 
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HDFS PVFS 

Throughput (MB/s) 24.6 105.5 

Network Traffic In (GB) 49.7 59.0 

Network Traffic Out (GB) 48.1 59.2 

Completion Time (min:sec) 10:50 2:31 



Test with Analytics benchmarks 
•  Grep: Search for a rare pattern in two million 

100-bytes records 
•  Sort: Sort two million 100-bytes records 
•  Never-Ending Language Learning (NELL): 

(from J. Betteridge) Count the numbers of 
selected phases in 37GB data-set 

•  Page-Rank Application: (from L. Zhao) 
Rank webpage by their reading difficulty level 
(aka. easy to read) 
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Read-Intensive Benchmark 

•  PVFS’s performance is similar to HDFS in 
read-intensive applications 
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Write-Intensive Benchmark 

•  In write-intensive application, HDFS performs 
better because it writes the first copy locally. 
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Its All About Data, Scale & Failure (not cycles) 
•  Continual gathering of data on data storage 

–  Failures, distributions, traces, workloads 
•  Nurturing of file systems to HPC scale, requirements 

–  pNFS standards, benchmarks, testing clusters, academic codes 
•  Checkpoint specializations 

–  App compressed state, special devices, special representations 
•  Failure as the normal case? 

– Risking 100s of concurrent disk rebuilds (need faster rebuild) 
– Quality of service (performance) during rebuild in design 

•  HPC vs Cloud Storage Architecture 
– Where is the storage?  What traffic patterns?  Common code? 

•  Correctness at increasing scale? 
–  Testing using virtual machines to simulate larger machines 
–  Formal verification of correctness (performance?) at scale 
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